
The Reporting Component
Copyright © 2006,2007,2008,2009 Peter Soetens, FMTC

Copyright © 2010-2012 Peter Soetens

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any lat-
er version published by the Free Software Foundation, with no Invariant Sec-
tions, with no Front-Cover Texts, and with no Back-Cover Texts. A copy of
this license can be found at http://www.fsf.org/copyleft/fdl.html.

Table of Contents
1. Introduction .. 1

1.1. Principle .. 1
2. Setup Procedure ... 2

2.1. Reporting Configuration File ... 3
2.2. ReportData section ... 4
2.3. Reading the configuration file .. 4

3. Scripting commands .. 4
4. Forcing data reporting (snapshot). .. 5

1. Introduction
This document describes the Orocos ReportingComponent for monitoring and cap-
turing data exchanged between Orocos components.

Note

Since version 2.6, the ReportingComponent has had a makeover to boost
efficiency and to rework non-periodic and snapshot modes. For periodic
reporting, the behavior remained the same.

1.1. Principle
Each Orocos component can have a number of data ports. One can configure the
reporting components such that one or more ports are captured of one or more peer
components. The reporting components can work sample rate based, event based, or
by requesting a snapshot of the current state. A number of file formats can be selected.

The Reporter can use buffers in order to log all data it receives or just report the last
values in case it is flooded with data. By default, the Reporter will setup unbuffered
connections and you need to override this manually if you wish to deviate from that.

A common usage scenario of the ReportingComponent goes as follows. An Orocos
application is created which contains a reporting component and various other com-

1

http://www.fsf.org/copyleft/fdl.html

The Reporting Component

ponents. The reporting component is peer-connected to all components which must
be monitored. An XML file or script command defines which data ports to log of
each peer. When the reporting component is started, it reads the ports and writes the
exchanged data to a file at a given sample rate or when new data is written.

Figure 1. Component Reporting Example

One can not use the ReportingComponent directly but must use a derived component
which implements the method of writing out the data. There exists a number variants:
FileReporting for writing data to a file and ConsoleReporting which prints the data
directly to the screen. The NetcdfReporting writes the NetCDF file format. In order
to support other file formats, you can write your own marshaller.

2. Setup Procedure
The ReportingComponent is configured using a single XML file which sets the com-
ponent's properties and describes which components and ports to monitor.

In order to report data of other components, they must be added as a Peer to the
reporting component.

The following deployment XML file creates a Reporting component as in the example
above (Figure 1, “Component Reporting Example”):

2

The Reporting Component

 <simple name="Import" type="string"><value>ocl</value></simple>

 <struct name="Reporter" type="OCL::FileReporting">

 <!-- Note: Activity may also be non-periodic -->
 <struct name="Activity" type="Activity">
 <simple name="Period" type="double"><value>0.01</value></simple>
 <simple name="Priority" type="short"><value>0</value></simple>
 <simple name="Scheduler" type="string"><value>ORO_SCHED_OTHER</
value></simple>
 </struct>
 <simple name="AutoConf" type="boolean"><value>1</value></simple>
 <simple name="AutoStart" type="boolean"><value>0</value></simple>
 <simple name="AutoSave" type="boolean"><value>1</value></simple>
 <simple name="LoadProperties" type="string"><value>reporting.cpf</
value></simple>
 <!-- List all peers (uni-directional) -->
 <struct name="Peers" type="PropertyBag">
 <simple type="string"><value>Controller</value></simple>
 <simple type="string"><value>Camera</value></simple>
 </struct>

Note that the AutoSave flag is turned on (this is optional) to save the settings when
the Reporter component is cleaned up by the Deployer.

If the Reporter has a periodic activity, it will sample all its input ports and write out
the current values.

If the Reporter's activity is non-periodic (Period omitted or zero), it will only write
out a new value when new data arrives on one of the connected ports. Ports that did
not get a new value will repeat the previous value.

Also the values of attributes or properties can be logged.

2.1. Reporting Configuration File
This is an example property file, to configure a Reporting component, once it was
created :
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "cpf.dtd">
<properties>
 <simple name="WriteHeader" type="boolean">
 <description>Set to true to start each report with a header.</
description><value>1</value>
 </simple>
 <simple name="Synchronize" type="boolean">
 <description>Set to true if the timestamp should be synchronized with
 the RTT::Logger</description><value>0</value>
 </simple>
 <simple name="WriteHeader" type="boolean">
 <description>Set to true to start each report with a header.</
description><value>1</value>
 </simple>
 <simple name="ReportFile" type="string">
 <description>Location on disc to store the reports.</
description><value>reports.dat</value>
 </simple>

 <struct name="ReportData" type="PropertyBag">

3

The Reporting Component

 <description>A PropertyBag which defines which ports or components to
 report.</description>
 <simple name="Component" type="string">
 <description>Report all output ports of this component.</
description><value>MyPeer2</value>
 </simple>
 <simple name="Port" type="string">
 <description>Report this output port</
description><value>MyPeer.D2Port</value>
 </simple>
 <simple name="Data" type="string">
 <description>Report this property/attribute</
description><value>MyPeer.Hello</value>
 </simple>
 </struct>
</properties>

If WriteHeader is set to true, a header will be written describing the file format
layout.

2.2. ReportData section
The ReportData struct describes the ports to monitor. As the example shows (see
also Figure 1, “Component Reporting Example”), a complete component can be mon-
itored (Camera) or specific ports of a peer component can be monitored. The report-
ing component can monitor any data type as long as it's typkit is loaded in the Orocos
type system (use ROS' rtt_rosnode or typegen to generate typekits).

2.3. Reading the configuration file
The property file of the reporting component must be read with the loadProperties
script method:
 marshalling.loadProperties("reporting.cpf")

You can not use readProperties() because only loadProperties loads
your ReportData struct into the ReportingComponent.

With
 marshalling.writeProperties("reporting.cpf")

, the current configuration can be written to disk again.

3. Scripting commands
The scripting commands of the reporting components can be listed using the this
command on the TaskBrowser. Below is a snippet of the output:
 RTT::Method : bool reportComponent(string const& Component)
 Add a peer Component and report all its data ports
 Component : Name of the Component
 RTT::Method : bool reportData(string const& Component, string
 const& Data)
 Add a Component's Property or attribute for reporting.
 Component : Name of the Component
 Data : Name of the Data to report. A property's or attribute's name.

4

The Reporting Component

 RTT::Method : bool reportPort(string const& Component, string
 const& Port)
 Add a Component's OutputPort for reporting.
 Component : Name of the Component
 Port : Name of the Port.
 RTT::Method : bool screenComponent(string const& Component)
 Display the variables and ports of a Component.
 Component : Name of the Component
 RTT::Method : void snapshot()
 Take a new shapshot of all data and cause them to be written out.
 RTT::Method : bool unreportComponent(string const& Component)
 Remove all Component's data ports from reporting.
 Component : Name of the Component
 RTT::Method : bool unreportData(string const& Component, string
 const& Data)
 Remove a Data object from reporting.
 Component : Name of the Component
 Data : Name of the property or attribute.
 RTT::Method : bool unreportPort(string const& Component, string
 const& Port)
 Remove a Port from reporting.
 Component : Name of the Component
 Port : Name of the Port.

4. Forcing data reporting (snapshot).
One can force that all current data ports are sampled and written out using the snap-
shot() operation. This only works when the Reporter is non-periodic and the Snapshot
property is set to true.

5

	The Reporting Component
	Table of Contents
	1. Introduction
	1.1. Principle

	2. Setup Procedure
	2.1. Reporting Configuration File
	2.2. ReportData section
	2.3. Reading the configuration file

	3. Scripting commands
	4. Forcing data reporting (snapshot).

